On the stability of lumps and wave collapse in water waves.
نویسندگان
چکیده
In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.
منابع مشابه
Dynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water
A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...
متن کاملبررسی دو بعدی آبشستگی و پایداری پنجه موج شکن توده سنگی با استفاده از مدل سازی فیزیکی
In this study two breakwater models with different conditions of bed, waves and water level are employed to analyze the toe stability and scour depth. The tests are conducted with regular waves. It is found that the scour depth in front of the rubble-mound breakwater depends on wave height, structure slope, water level and wave period, but the results reveal the effect of wave period toe is mor...
متن کاملNumerical Simulation of Random Irregular Waves for Wave Generation in Laboratory Flumes
Understanding of wave hydrodynamics and its effects are important for engineers and scientists. Important insights may be gained from laboratory studies. Often the waves are simulated in laboratory flumes do not have the full characteristics of real sea waves. It is then necessary to present reliable methods of wave generation in wave flumes. In this paper, the results of numerically simulate...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملExperimental investigation of wave parameters effect on damage of the berm reshaped seawall under irregular wave attack
This paper presents an experimental study the influence of wave parameter on the damage of reshaping seawall, model tests have been performed in several water level conditions. The experiments of physical modeling of this research have been done in the flume of the Soil Conservation and Watershed Management Research Institute (SCWMRI). The waves applied to the structure model are irregular and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 366 1876 شماره
صفحات -
تاریخ انتشار 2008